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A. Classical Functions
1, General

In the study of atomic collisions under the influence of a short-range v
spherically symmetric potential V(r), the phase shift plays a fundamental role.
Both classical and quantal effects can be treated from this S‘t;éndpoint. The ohase

shift is intimately related to the collision lifetime, the cross section, and the

deflection functione.

The phase shift is equivalent classically to a function A that has the

alternative forms:

o
A(LE) = LW -2pr, + Zf (p(r) - pg) dr (1a)
To
-2m{f p(r)dr-fpo (r)dr} (1v)
Re r b
o
R
= 2 lim ( f p(r) dr - pl(R,r) dr} (1c)
R-’oi To b‘.l(R)
o r dav
slp(r)- i dr. (14)
° E - V(r)
Here the p's a.ré radial momenta,
p2(x) = 24(E - V(r)) - L/r, (28)
o 2(c) = 24 - 1/, (20)
plz(n,r) - ZF(E - V(R)) - Lz/rz, (2¢)
2
P2 = 2 4E» Py 2M (B=V(R). ‘ (2d)




and the turning peints r_, t, and bl(H) are defined by
L
= "-" 2 = bn = R Y
L= ro[2}4(h V(ro)ﬂ by bl(\d)OR (3)

The connection between the Eqs. (1a) to (1d) depends on the evaluation of the
integral
Ao @ = p @ -B? LT in~
F(R):/b'po B,R(1 - 25)* - Ly + L sin™ (b/R)

=pR-13+ 0@ ... )

and its replacement by a function with the same limiting behavior,

, R
F = R,r)dr
(R) ‘/b(R)pl( r)

1{ blz(R) ':15
T 1

Rp /L (x2 - 1)5
BLJ‘R/ (x 1) dx. (5)
1 x

The final connection with Eqg. (1d) comes about because

F'(ro) = 0,
' dav -1
Ea.rﬂ_{?.- p(r) {1 “pT == [Zﬂ(E-V(r)ﬂ } (6)
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The first form of Eq. (1) is the familiar one. The second shows how the
phase shift is composed of the difference between two simple action integrals,
one over the radial motion on the actual trajectory and the other cver the radial

motion on a comparison trajectory with vanishing interaction. In the third form

the comparison trajectory is taken as force-free inside R, but with the constant
potential V'(r < R) = V(R). The last form shows the contribution to the phase
shift from different regions of the trajectory, displaying explicitly the
dependence on the radial force - .g 3 this form has the computational advantage
of converging rapidly at large r if the interaction is of short range.

The classical deflection function is well known to be a derivative of _.:

& (L,E) = 0a/a L), =TF2L / ) (Ta)

2Lf x 21.‘[3dr (Te)
b TRT) U TB() ’

R
=2 lim

dr
-~ f ‘75“ (7e)
R-’CC bl(Ry 1 T r (r)

rd¥
- ar dr 74
: '[0 B-V(r) rEE(r) (7a)

1
The last form is equivalent to one that has been used by Firsov in the study
of the inverse problem, the deduction of the potential from the classical
deflection., Since it converges more rapidly than the first form at large r, it

should be useful for camputation.



The classical collision lifetime is also a derivative of A :

QST L (L,E) = (Q0/5E) = 2 Z ) - phar - 2ur, B2 (8a)
o
(F e Poar )
= 2 lim - —_—
R¥w W‘Ko P ’yﬁ 5()S o)
R R 3
= 2 lim {y x - < ; (oc)
N dad To o(r) bl(ﬂ)pl(R’r) J
2, 2
[E‘V(”‘L/*"Jdr_ 34)
p(r)

The last form is the preferable one for computation because of its rapid
convergence, It also displays conveniently the analytical behavior of Q near
the orbiting singularity and elsewhere,

The classical phase A (L,E) is frequently computed because of its
importance for semiclassical scatt.eringz, which involves quantized angular
momentum but ignores quantization of the radial motion. The semiclassicali

phase shift follows from the identifications

L2+ %) A4,
AE(4,5) =af(l+ DA, ). (%)

o‘" (£, E) is just the asymptotic phase shift of the first order WKB approximate
wave function. In certain cases where 50(12 s, E) has been tabulated for
sufficiently small intervals of E it is possible to differentiate it numerically

to obtain QX _(L,E).
coll



Jhen the potential contains a well at small r, the classical action integral

for motion inside the well can always be defined:

r dv \
A(L,E) 3(‘1 p(r)dr gfl plr) —Fe g, G
r, r2 o=V(r)

1
t
the two forms is established by the fact that the functicn F of Eus. (5) and (6)

where r, <r, are the turning pointsr with p(rl) = p(rz) = 0; the connection between

vanishes at the turning points r, and r.., The functicrn A applies as well to moticn

2 1
at nositive energies btehind a barrier (metastably tound motion) as tc motion in a
potential well at negative energies (truly hound motion). The functiocn A(L,E)

appears in the semiclassical approximation for the bound states in the condition

AR + 3) A, E° L) =(n+%)h (11)

n,

which gives the lowest order aporcximation to En when n is an integer. 4i(L,E)

b4
can obviously te looked on as a function measuring the capacity of the well, since it
counts the number of tound states that can be accommodated with energles less than E,

The classical lifetime inside the well is given by the equivalent forms
.cl x dr
& =2 f
bound K r, p(r)

i )
J[zhr s - v F - v - 1 )

This obviously is just the time taken for one complete cycle of motion in the

well. The total classical lifetime,

cl el cl
< (E,L) = 2 +Q (13)
tot coll tound,
F I shall use the convention of indexing the turning points odd when the radial

force is positive, and even when it is negative, with the indices increasing as
r decreases,



R -

is more than just a formal construct -- it is the natural expression to use in
discussing the thermodynamic properties of the gas. The internal partiticn functiocn

for diner clusters is conveniently expressed” in a form whose classical limit is

. af [ -E/xT 2 2
:1nt =h l{)’; / Q°1 (£,L) éLd(L /K ). (1L)
cl hd tot

Closely related to the classical action integrals is the integral

B(L,E) =37° ] p(r) [ ar (15)
a1

which measures the imaginary action for motion in the classically forbidden region
under a barrier. This integral aopears in the lowest order approximation for the

quantal barrier leakage.




2. Orbiting
«henever the effective potential,
. 2 2
U(r) = V(r) + L/2ur, (16)

has a smcoth maximm, classical orbiting will occur at energies near the energy

Eh of the maximum., The classical collision lifetime has a logarithric singularity

as E< Em from below and above, and the classical phise A suffers a discontinuous

step by the amount A(L,Eo) given by Xg. (10). Ford, Hill, Wakano and Wheeler

have given a valuatle analysis of these discontinuities at ortiting, and have shown

that they are artifacts of the classical anproximation which disanpear when quantum

mechanics is applied. In this they are reminiscent of the classical infinity in

the tctal scattering cross section, which only disanpears in quantum mechanics (see

especially the recent work of Paulyg). )

0rbitiné vcollisions_l a.fe expected to play an imp;rtant role i‘xkx»the 3~body

study recambination of reactive atomgs. Several classical treatments of such events
are already available.6 The most important states contributing in such theories
are presumably the long-lived collisions at energies close to orbiting. This is
Just the region where the quantal correction to the classical infinity must come
in, and its importance must be evaluated. Before going on to an examination of the
quantal approximations, it is convenient here to examine the properties of some
simple potentials that illustrate the behavior of the classical collision lifetime,

a. Parabolic Barrier
. The simplest potential that exhibits the orbiting phenomenon is the quadratic,

2

="..a -
v, Em 3 (x xh) . (17)




while this potential cannot be valid over the w'ole range of r, it is almost always
a good approximation within some distance d of the maximum. Vhen the energy E

of the motion is close to Eo s

E= Eo + 6, (16)
tae contribution to the classical lifetime from the motion in the region
X, <% < xm + d can be computed. It is

1 2 3
@) = 2p/a)2dn {1, Glz = D} a2, (19)

(o]

where 12, ad2/2\5| (20)
1

and the sign (:_) is taken in the same sense as the sign of E . when E is small

Eg. (16) can be expanded to give

1 1
Qd (d) = V‘/a)g{ﬁn (2ad2/|£l) + —%? } ~a(2gy/ (E +€))§. (21)
(o] al

This expression exhibits the logarithmic singularity of QCl as E-) 0. vhen Eq.
(19) or (21) is applied in the radial orbiting problem, the expression for
le(d) must be doubled when E > 0, in order to take oroper account of the motion
in the full region X - d5x§xm+ d.

B. Attractive Power Law
l.ore realistic for the atomic collisicn problem is the pure radial attractive

potential,

v(a) =-a r (n>2). (22)



T «

This ‘'ust of course be coupled with the centrifugal term ,

- 122,07, (23)

to show the ortiting maximum. The resulting effective octential can be written

in a form that scales conveniently,

wfl(n) WA I &2, (2L)

where A= (24 /Lz)(Z/J 3n/L2)2/n—2 ’
1/n-2 .
@ =r/r,, =r, = (Z/an/Lz) . (25)

Tre naximum occurs at

- =2
(2™ s () = 22 (2m T

P

mn

L/n=2

and V) “(Pp) = -2(n-2)(2/n) . (2¢)
The inflection »oint occurs at
O = (nln+ Ly6)/2
s V(e D) e TR e
wa AR - _'_rzl_(,’:__;__‘?)(n(n"+ L))B/“ N (27)

from kq. (26) we sece that the guadratic appreximation to the raxinum, Lg. (L17),

is characterized ty the constants



271w _( -2)L2 12 \l/n=2
a "(Area- ) ’){ (Pm) " nA ( )

2n/‘ FaT!

and E 'V(P ) /A (28)

The distance d in kgs. (19) to (21) should obviously e taken somewhat less than

the distance dinf from the inflection point to the maximun,
din.t‘ = I‘-x-(‘ainf -en)
n 1/n-2 n + 1,1/n-2
= (—-fz-i-n) [(——3—') / - 1. (29)

From the potential ‘\fl'(n) we can also determine the form of the cocllision
lifetime in the low energy limit at finite L. Using Eq. (u¢d) and making the turning

ooint Po the principal parameter, one can define

5 =P0/P:
€-15=-p.p2 (3)

™
I
Py o)
U
o
+
N

so that

* g2
Yt —np @? - ) [+ & ufs

° °(l-S)E-y(l-sJ[

=np" "’ b i 31 (n). (31)

J=0

10



The 1-st form represents an expansion of the integral! in powers of ¢, valid at

small £ or small ... Inverting .. (30) we find

e -emogpE

g =€(g DL s (32)

so that convergence is assured if n > 3. Xq. (31) can then be rearranged as an

expansion in nowers of €. The leading term rives

z)n/Z La E(n-b)/z

4.'01 = (2u/L n Io(n)...... (33)

The integrals Io(n) can be evaluated easily:
w .
1,03) =4, 1) =p, 1.(5) =1, I(6) = _3_5“' (31)

c. Lennard-jones Potential

For this case the potential V,(r) is usually expressed in terms of the well
depth £ and the turning point r° at E=L =0:
o

v, " LE (r/r::)-’l2 - (r/r: ).6} . (35)

To discuss the orbiting maximum it is possible to write the equation in a reduced

form similar to that of the preceding section:

12 -6 =2
Ve av,eu)mfe - e @ (36)

il



where

£ = 2?2136, 2‘. (37)

However, we shall use instead the dimensionless form
12 ) -2

v, = U /LE = 8 -8 +Ys , (38)
with
s =r/r°=r P/r° ¥= 14784 £(r)2 (39)
o * O’ - /I" o’ °
The maximum of v2 occurs at szm, vhere
X 332: -6 ’an-m
om = DF DY L0 (40)

and the value of Yo at the maximum is

v,m =25 C 5, 7 a@)” 2 ¥/ )

The second derivative at the maximum is
2

" -8 . 87 32
v, (m) = =24 8, * 120 8o - —3—(1 - (Y/3) cee)e (42)

The maximum merges with the minimum behind the barrier at the critical values

, |
Y - %551/3, ol -5/, volsh) = 1/5, v, " (8 = 0. (13)

By comparison with the simpler function



AR CRER VAT (k)
for which
s =k e m2e ey Y2
im YY), Vlm 3J_m (¥73) ’
“(m) =2 s "8 gy
v s, -8y /3, (L5)

it is seen that the short-range repulsion moves the maximum to smaller r and

raises it slightly. However, the deviation from the behaviocr of the comparison
function A is not great until quite close to the critical values .Tt s T. For
most purposes connected with orbiting at energies and angular momenta below the
critical values it is therefore quit;e valid to negiect the repulsive part of the
potential, at least for a semiquantitative survey of the behavior. It is worth
noting that the critical energy for the lennard-Jones potential is L/5 of the

dissociation energy.

B. Quantal Collisions

1. Semiquantitative Survey.

a. General
The scattering matrix S provides the most familiar general formulation of

quantal collision problems. In many cases, at least over a restricted energy range,
it suffices to consider single channels separately and the computation reduces to
the determination of phase shifts %(E), with the relationship
s = 2% (46)
K7 °

The lifetime matrix is related to S by the matrix equation

13



Q=# as'/aE. (u7)

In the single channel case this reduces to

Qe (E) = and {»E/dE. (L8)

Both the scattering and lifetime matrices can be applied to many-body collisions.

b. Bound States.

The lifetime matrix can be defined even in the energy region where only
bound states exist., A typical diagonel element QE(E) there shows a spectrum of
narrow resonances that may be represented as & -functions or as peaks centered at
E

h §
(or other interactions). Near E,, then,

with a finite half-width 11 determined by the radiative transition probabilities

2 al -1 ’
Qu(E) =A f;[(zi-n) + (1 1/2@ gq(fi,Ei-E). (49)

The probability of cbserving the specific energy E, if it is known that the system

is in the state i, is

Pi(E) - Qii(E)/h’ . (50)

and the integral over the resonance region gives

resonance

It is now possible to invert Eq. (48) and define the phase shift unambiguocusly



even for the bound region of the spectrum:
- E t ]
24 E(E) = QB )AE". (52)
o ~ec

The phase shift in the bound region has, by virtue of Eq. (L9), a step of magnitude
T at each bound level Ei; these steps are rounded in accordance with the respective

widths f'i:

§(E) = Bk} + L+ tan”([;/2(E,-E)). (53)

The phase shift at zero energy then automatically satisfies Levinson's theorem,

where N,f. represents the mmber of bound states. More generally,
g
6 (E) =Tn (E), (55)

where nﬂ’(E) is the number of bound states with energies below E (E > 0). These
equations are valid for states of any angular momentum.
For more complicated systems where simple phasé shifts may be hard to define,

Eq. (47) can be inverted to define the S-matrix through an integral equation:

-lE ' L]
S(E)-i+i/ﬁfg§'(E)dE. (56)
-

By this equation the phases of S ‘are uniquely defined in a way that should satisfy

a generalized Levinson's theorem.

15




¢c. Barriers and Semi-bound States.

Equations (52) and (56) are of course valid at any energy, not merely in
the bound region., Let us now look in particular at the effect of the semi-bound
region behind a potential barrier (most commonly of centrifugal origin) in a
scattering problem. In the classical limit, motion in this region becomes fully
bound, and it is very nearly so for heavy masses and thick barriers in quantum
mechanics. A characteristic dimensionless parameter, for a potential of standard
shape, can be written in terms of the energy minimum - ~ and the turning point roo

at E=0, L =0:

fo=A /(2/4 E)é r:. , (57)

The classicai limit is approached as % 30, As long as £ is smail and the energy
E is far enough below the top of the barrier at Em’ the system is in the semiclassical
region where the semi-bound states can be treated very well by the first-order
WKB approximation. The region near the top of the barrier requires separate
attention, and will be discussed in the next section.

In the semiclassical region, where barrier penetration is small, the semi-

bound states are characterized principally by their energy level, and their

E
"~ £,n
width J:.. 0’ In the simplest form of the WKB approximation, the energy levels of
-9

both bound and semi-bound states are determined by Eq. (11); the dependence on

the parameter £ is shown by rewriting this in terms of reduced quantities:

) =E/g, O =1x/r°

w0 = A (2uE)E - 2 (g ve)ae,
£
2

X ():Y:n) =2174(n + 3). (58)

16




The average density of energy levels near E is then given apprcximately by

- _ 1 Jax -1 ¢l
QO(E,P) %)o HE:—;— = h Qbound' (59)

(This is a special case of a general relation between the density of levels and the

lifetime.) The shape of the resonance level is still given approximately by Eq.

(4L9), but the level widths {; n are now determined not only by radiative processes
2
but also by the transmission of the barrier. The gquantal lifetime spectrum can be

subdivided approximately into an internal part embodying these resonances,

U D) F200 LB, B) (BB, (60)

and on external part Q ext that is given in first approximation by the classical
formula Q:i.ll of Eq. (8). The classical lifetime inun g represents essentially
the average behavior of the function Qin " of Eq. (60). The true quantum lifetime
function camnot strictly be divided into external and internal parts, but in the

semiclassical region it can be approximated very well by the sum of these two:
~ - Cl r
Q_( sE) = Qint(E’ﬁ) + Qcoll(E,)L.), (E << Em). (61)

The behavior of the phase shift can now be examined by extending Eq. (52)
into the semiclassical region. The phase shift here continues to show a slightly
rounded step of magnitude Tevery time a resonance level is passed, which we can

attribute to the internal contribution to the phase shift:

int ~ -1 n
££ (B) =2 +}‘.;tan (fe,n/z(Ez,n' E)). (62)

17




This step function is now superimposed on a gradually shifting background é/?xt(E)
due to the external part of the potential which is approximately given by the
function 5.0(2, E) of Eq. (9). The average behavior of the internal step function
is represented by the function A(L,E) of Eq. (10).
The level widths in the semiclassical region are affected by the possibility
of penetration through the barrier as well as by radiative and other interactions.
I shall consider here only the barrier penetration contribution, which for simplicity

—~1

) B
of notation will be denoted just £, o The reciprocal of the average lifetime
Ay
of the level (£, n) depends on the product of the frequency of collision with the
. cl .
barrier, approximately I/Qboun d(En,:Z) , and the barrier transition probability,
vwhich is exp(-B(/,E)/ A), according to the simple WKB result, with B given by

Eq. (15). The dependence on the parameter is shown if we write

)
Bi,y) = 131';1 (24 ot 2~ (-y+ U/ )é de (63)
.,"Pl
Then the average lifetime of the n-t'-h- level is given by
. . n o~ cl
Q (1, n) 25/11 ,n Qbound(En:i) eXP(B(,Q,En’ﬁ)//ﬁ), (6L)
or [ 4=k €0un™ emt-Allpr . (65)
Ksn

From these expressions we can derive an estimate of the average rate of
penetration through the potential barrier in an energy range O E embracing several
resonance levels. In the time At and the range AE the mmber of barrier
passage events A N is proportional to the density of available levels multiplied
by the reciprocal of the average lifetime, with an additional factor of % for

18



passage in one direction only. The result, from Egqs. (59) and (6L), is

AN = %/ﬁ-lAEAt exp(-B(£,E)/R). (60)

In the approach to the classical limit the density of energy levels increases
linearly with ‘f:l , while the level widths F and the rate of barrier passage decrease
exponentially with ffv-l. Thus the barrier rtpidly becames impenetrable, More
interesting is the fact that the levels became exponentially more and more isolated
from each other even as they approach the classical infinite density. The classical
spectrum is therefore not a simple continuum, but rather an infinitesimal fine-toothed
comb. The usual continuocus classical expressions are not the result of a simple
passage to the limit‘fu-)O s but they require an averaging as well,

The pathological nature of the classical spectrum, with infinite & -function
discontinuities at every point, is, naturally, only imperfectly represented by
the classical expressions QCL(L,E) and A(L,E). Similarly, whenZis small but
finite, it is hopeless to try to represent the behavior of the resonances by using
the WKB expansion of the phase shift or the lifetime in powers of £ beginning with
the classical term. One must expect such an expansion to miss the resonances
completely. That expansion may nevertheless be useful in improving the background

continuous spectrum attributable to the external parts Qext or ém

that depend mainly
on the potential near the outer turning point.

By using refinements of the WKB method which do not necessarily depend on a
simple expansion in f&, it is of course possible to improve on the estimates of the
energy level positions and widths given here. Some attention will be given to

such improvements later in this paper.,

19



d. Behavior Near a Barrier Haximum

Close to the maximum, it is natural to apprcximate the barrier by a parabola.
Quantal effects in such a region have been frequently studied, perhaps most carefully
by Ford, Hill, Wakano and Wheelerf‘ The characteristic circular frequency “
plays a fundamental role in the theory -- it is just the freguency that would be
associated with the harmonic oscillator if the parabola were inverted. In the

notation of Eq. (17), riv;,, is defined by

Lo = (a/p )%. (67)

For atomic collisions we can use the potential v. of Eq. (LL), with ¥ and £ given

1
by Egqs. (39) and (57) and a dimensionless quantity containing “ s

& .
Aec/hE = (2/3°) 50, (68)

where we can also express ¥ in the form

2 .2 2
Y = G+ 1)U =T (L4 3) /b (69)

The quantity ,ﬁ <« 1is a natural measure of the energy range near the barrier
o
maximum in which quantal effects must dominate; comparing this with the height of

the maximur: we get the ratio

A « /U (max) = 36/ " =6/ L i+ 1)

[ -

= o/(L.+ %). (70)

This criterion, independent of mass, shows that barrier maximum effects may be

important throughout the whole of the tarrier for values of the angular momentum



quantum number less than about 6 -- but the barrier is far from parabolic in most
of this region, so a more refined theory is called for.

A related criterion can be used to estimate the importance of the region of
quantal behavior as it depends on the reduced mass and other parameters of the
system, If we plot the locus of the maximum in a diagram of energy versus I.2 s O
of E/ig versus ¥, we obtain, by Eq. (45), the curve

B /LE = 2r/3)7°. (1)
The region of strong quantal behavior can be shown bracketing this curve at a
distance |
AB/MLE = th w/LEn :_(2/3*)£&r. (72)

The temperature can be shown on the same diagram as a horizontal line kT/4LE.
Finally a limit in Y can be introduced beyond which the inﬁeraction can be ignored.
The relative importance of the quantal behavior can then be estimated from the
relative areas of the quantal and classical parts of the diagram (by plotting L2
or Y , the multiplicity associated with L is properly taken into account). By

using the new reduced quantities

L M Y/9 H'zs .
Enzt OF 3/2
"5'0 :Aw - ’ BJIZ‘R('B e - g : Z, (73)
kT .,
VT = 6033/2%'3 5 T ’

we arrive at a single reduced diagram,

21



We can now compare the areas

£ L/3

= dz =
Iqu i{;aw z =V

5/3
and Itot il I

forming the ratio )
= -1/3 - - j! & 1/3
R = Iqu/Itot A 2:3° L ( E/xT) 7, (7h)

Since the areas are proportional to volumes in phase space, the ratio R is a
satisfactory measure of the importance of the quantal regiocn at the temperature

T. In Table I this procedure is applied to some representative cases.
The characteristic frequency « plays an important role in the quantum effect
o

that damps out the logarithmic singularity in the classical lifetime spectrum at

the orbiting energy. It is possible to use simple uncertainty principle arguments
to show that the maximum of the classical curve must be limited to about wo.l

(the quantal resonances superposed on this curve are much higher, but narrow in
proportion). These results are substantiated by the more detailed theory of Ford,
Hill, Wakano and Wheeler! Taking z = (e - E,)/ /i« , their formula for the external
part of the phase shift (which omits the contribution of the resonances) leads to
the result for Qext When z is smalll

d g .
2 Cext 1l ). ] J - (8 ﬂ'l T e ’ (75)
Qext - (ao dez = 73] { %Xn[(;) [1 (Tt-.) l + e 21

[}

where ¥ = 1,75811 is Euler's constant; this gives the quantal limitation on the

classical orbiting singularity:

22



-1

Q_, < ¢ An(ly) = 1.964 w (76)

ext
Their theory also describes the important phencmena associated with the modification
of the quantal resonances near the barrier maximum. However, they do not explicitly
discuss the related effect of virtual levels immediately above the classical
maximun. Qualitatively, their theory shows that the resonances behind the barrier

continue to play a role right up to the maximum, but are much broadened and distorted

in shape.
-Brn
The barrier penetration probability deviates from the simple form e ’
becoming
B -1
TRl (77)

a result that is exaét for a parabolic barrier and probably a good approximation
even where the shape diverges from the parabola. In what follows we shall review
and extend their treatment, applying the theory in some detail to some atamic
collision cases. In the case of H + H collisions we shall be able to compare the
approximate theory with some iliuminating exact computations,

Particularly in cases where .- is small, it appears fram Eq. (71) that the
domain of strong quantal behavior extends over a much wider energy range than the
parabolic approximation is valid. In fact, the parabolic approximation cannot

extend as far as the inflection point, and we have by Eq. (27),

19, :
1 - Einﬂ/Em 1 % (7) 0.158. (76)

By camparison with Eq. (71), we see that quite large values of/e are required
before the guantal regicn is safely confined to the parabolic region. The

criterion is

23



Aw/f(E -E ) =6/0.158 (L+ 3) = 37.9/({+ %) << 1. (79)
o max inf]l

Furthermore, the treatment of Wheeler et gll.f is accomplished by matching the solution
appropriate to the parabola immediately to a WKB solution at some intermediate
distance. This implies that the WKB solution must be valid to a radius at least

as small as the inflection point. However, this can be tested by using the

7
criterion given by Schiff, that

- hd U/dr

<«< 1 - (50)
2{24(E0(r))} ¥

i odk
\21;2 dr

if the WKB solution is to be valid. In the special case E = Emax’ r=r this

infl
reduces to
(-1-..% Vb, (0.158)-3/2'(1 - ‘})-1 = 23.8/(£ + ) <«<1. (81)

This again requires very large values of £ for validity.

Fortunately, it is possible to develop a quantitative method of approximation
valid for small values of A and energies near the barrier naximum by using the
technique of Miller and Good.‘3 Their results show that Eq. (77) is valid even
where the potential is no longer parabolic., In the next section we shall apply
Miller and Good's method to extend the results of Wheeler et al., This method
proves valid for H + H collisions, and can easily be applied to heavier atoms for
which it must be even more reliable,

In Table I we give same numerical estimates of the importance of orbiting
quantal effects for some diatamic collisions chosen throughout the periodic table,

These are necessarily imprecise, principally for the reason that the strength of

2y




the long range attraction which controls the orbiting behavior is not experimentally
known. Accordingly we have used the experimentally known dissociation energies
and equilibrium distances with the Lennard-Jones equation. Besides the dimensionless

quantities of Eq. (57) and R293o of Eq. (7Lh), we give the reciprocal of the frequency
“’o(_f = 1) which limits the magnitude of the classical maximum in the lifetime at

orbiting. The corresponding limit for other values of { can be cbtained fram the

equation

3‘% 1 2 a1, A
5 T D (e D e b (82)

« =1,
o (£) =

From Eq. (70) we get also

E_(£) =X {(’(.b 1)}%}0 &) -4‘.{1(»& D}éug(l- 1) = [.Q(£+ 1)/2]3/2 E(£=1). (83)
max 6 [ 12

It appears in Terle I that the statistical criterion R, measuring the importance
of the quantal orbiting region of phase space, falls off much more slowly than Hie
Quantal effects may thus be of importance in transport properéies and three~hody
reactions of atoms, at least throughout the first row elements including the

atmospheric gases O and N.
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